Тихов А.В., Суслова А.Ю., Барышева Ж.В., Суслов С.И., Тихов А.О.

Коррекция индуцированной гиперметропии высокой степени на твердотельной рефракционной лазерной установке «OLIMP-2000/213» (клинический случай)

АО «Межрегиональная клиника» (Клиника лазерной микрохирургии глаза А. Тихова), Ярославль, Череповец

РЕФЕРАТ

На клиническом примере продемонстрированы возможности твердотельной рефракционной лазерной установки «OLIMP-2000/213» в отношении коррекции индуцированной гиперметропии высокой степени в сочетании с астигматизмом.

Ключевые слова: рефракционная хирургия, твердотельный рефракционный лазер, индуцированная гиперметропия.

На сегодняшний день лазерная рефракционная хирургия является бесспорным лидером среди современных методов коррекции аметропий. Но, к сожалению хирургов и пациентов, возможности данного метода небезграничны. В первую очередь это касается высоких степеней гиперметропии и астигматизма.

Так, в большинстве руководств по рефракционной хирургии [1-3], а также в рекомендациях производителей эксимерлазерных установок показания для коррекции гиперметропической рефракции ограничены 4-7 дптр, для коррекции астигматизма — 4 дптр. Это объясняется как анатомическими и гистологическими особенностями строения роговицы, так и реактивностью роговичной ткани и ее способностью к регенерации в ответ на операционную травму [2]. Общеизвестным является тот факт, что выраженность регенераторного ответа в виде субэпителиального флера и склонность к регрессии после операций поверхностной абляции, как правило, увеличиваются пропорционально степени аметропии.

Подобные ограничения в ряде случаев не позволяют провести коррекцию индуцированной гиперметропии или гиперметропического астигматизма пациентам, которым много лет назад была выполнена операция передней дозированной радиальной кератотомии. В подобных ситуациях методики поверхностной абляции могут быть чреваты развитием регрессии рефракционного эффекта в сочетании с флером роговицы разной степени выраженности. Операции лазерного кератомилеза in situ (LASIK) могут осложняться интраоперационными проблемами с флэпом, а также появлением диастаза посткератотомических рубцов, особенно при наличии более 8-10 насечек. Около 10 лет назад, наряду с успешно работающими эксимерными лазерами, в арсенале хирургов появилась новая твердотельная технология [2, 4-6, 9, 10], которая в определенной степени позволила расширить возможности рефракционной хирургии, особенно в отношении аметропий высоких степеней и сложных видов рефракции.

Важной особенностью данной технологии является феномен «влажной абляции», обусловленный физическими свойствами ультрафиолетового излучения с длиной волны (λ) 213 нм: толерантность излучения к степени гидратации роговицы позволяет эффективно аблировать строму роговицы без подсушивания, в наиболее физиологичном ее состоянии [4, 5, 7, 8]. Данный феномен, а также меньшая энергетическая и термическая нагрузка на роговицу при работе на твердотельном лазере (по сравнению с эксимерным) в совокупности оказывают меньшее травмирующее влияние [4], а следовательно, и меньший реактивный ответ роговицы на лазерное воздействие.

Цель — оценить возможности твердотельной лазерной технологии на примере коррекции индуцированной гиперметропии высокой степени.

Материал и методы

Пациентка В., 1980 г.р., обратилась в клинику с жалобами на низкую остроту зрения обоих глаз. Из анамнеза: в 1999 г. на базе передвижного модуля МНТК «Микрохирургия глаза» была выполнена операция передней дозированной радиальной кератотомии по поводу миопии высокой степени с астигматизмом на правом глазу, по поводу миопии средней степени с астигматизмом на левом глазу. В течение последних нескольких лет отмечает существенное снижение зрения вдаль и на близком расстоянии; очковую и контактную коррекцию не переносит.

Для решения вопроса о возможности проведения операции лазерной коррекции зрения и выбора хирургической методики было выполнено стандартное обследование: авторефрактокератометрия (с узким зрачком и в условиях циклоплегии), визометрия, кератотопография, пахиметрия, бесконтактная тонометрия, биомикроскопия, офтальмобиомикроскопия (табл. 1).

Таблица 1

Результаты предоперационного обследования

Основные показатели	OD	OS			
Острота зрения без коррекции	0,1	0,2			
Субъективная рефракция	sph+10,0 cyl-4,25 ax73	sph+3,5 cyl-3,0 ax81			
Острота зрения с коррекцией	0,7	0,7			
Авторефрактометрия в циклоплегии	sph+9,0 cyl-3,25 ax68	sph+3,25 cyl-3,25 ax82			
Кератометрия	выполнить не удалось	Rave 39,62D cyl-3,25 ax81			
Кератотопография	R 32,31 cyl 2,70 ax 69	R 39,18 cyl 3,77 ax 90			
Пахиметрия в центре	552 мкм	519 мкм			
ВГД, Ро	18,1 мм рт.ст.	12,3 мм рт.ст.			
Биомикроскопия	10 радиальных и 2 тангенциальных рубца роговицы	4 радиальных и 2 тангенциальных рубца роговицы			
Характер зрения	одновременное				

При выборе методики операции мы руководствовались, в первую очередь, состоянием роговицы. Наличие 12 посткератотомических рубцов не позволило нам остановить свой выбор на методике LASIK. Альтернативной методикой, позволяющей получать стабильные удовлетворительные результаты и расширять показания к рефракционным операциям, в нашей клинике является методика фоторефрактивной кератэктомии с дополнительной обработкой аблированной поверхности 0,02% раствором митомицина-С (MAGEK).

В арсенале хирургов нашей клиники на момент операции имелись две отечественные лазерные установки: эксимерная (λ =193 нм) и твердотельная (λ =213 нм). Сравнительный анализ полученных к тому времени послеоперационных результатов определил наш выбор в отношении установки для операции на правом глазу с более сложной формой аметропии в пользу твердотельной технологии.

Таким образом, на обоих глазах была выполнена операция по методике MAGEK. Правый глаз прооперирован на твердотельной установке «OLIMP-2000/213», левый – на эксимерной установке «OLIMP-2000/193» (табл. 2, 3).

Результаты

Период наблюдения составил 3 года. В послеоперационном периоде осложнений не отмечалось.

Медикаментозная терапия в раннем послеоперационном периоде включала инстилляции противовоспалительных и антибактериальных капель, после снятия мягких контактных линз (МКЛ) — инстилляции кортикостероидов по убывающей схеме под контролем уровня ВГД. Полная реэпителизация роговицы обоих глаз отмечалась на 3-и сутки; защитные МКЛ сняты на 6-е сутки. Через 3 года после операции острота зрения обоих глаз и основные рефракционные показатели были аналогичны данным, полученным через 1 год после операции (табл. 4, рис. 1, 2).

По результатам динамического трехлетнего периода наблюдения можно сделать вывод о том, что регрессия рефракционного эффекта на обоих глазах отсутствует, полученные рефракционные результаты стабильны и обеспечивают высокую некорригированную остроту зрения, превышающую на 1 строку максимально корригированную остроту зрения до операции; биомикроскопически на протяжении всего периода наблюдения роговица остается прозрачной, субэпителиальная фиброплазия (Наze) отсутствует.

Пациентка результатом операции удовлетворена, субъективно отмечает существенное повышение остроты зрения вдаль и на близком расстоянии и, как следствие этого, значительное улучшение качества жизни.

Таблица 2

Технические характеристики рефракционных установок «OLIMP-2000/213» и «OLIMP-2000/193»

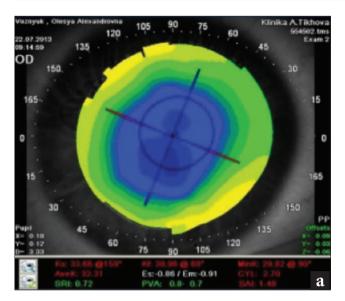
Технические характеристики	Твердотельная установка (λ=213 нм)	Эксимерная установка $(\lambda = 193 \text{ нм})$		
Длина волны	213 нм	193 нм		
Частота генерации	100 Гц	100 Гц		
Энергия импульса	0,9 мДж	1,5 мДж		
Диаметр пятна	0,7 мм	0,8		
Формирующая система	сканирующее пятно	сканирующее пятно		
Система слежения	активная, с захватом по лимбу	активная, с захватом по зрачку		

Таблица 3

Данные операционных протоколов

Основные параметры	OD	OS
Диаметр оптической/переходной зоны	5,8/7,8 мм	5,8/7,8 мм
Глубина абляции	145,4 мкм	80,27 мкм
Время воздействия	74 сек	34 сек
Ожидаемая расчетная рефракция роговицы	38,8 D	42,58 D

Данные послеоперационного наблюдения


Таблица 4

Основные показатели	OD		OS			
	1 мес.	6 мес.	1 год	1 мес.	6 мес.	1 год
Острота зрения без коррекции	0,6	0,7	0,8	0,6	0,8	0,8
Авторефрактометрия sph	+0,75	+1,75	+2,25	-1,5	-0,5	-0,25
	-0,75	-1,25	-1,5	-0,75	-0,75	-1,0
cyl ax	141	118	115	180	122	126
Кератометрия	37,0	36,25	36,25	42,0	41,0	41,25
Rave cyl	-0,5	-1,75	-1,25	-0,75	-1,0	-0,75
ax	46	74	76	57	89	94
Haze	0	0	0	0	0	0
Пахиметрия в центре			470 мкм			506 мкм
ВГД, Ро	18	15	10	18	14	11

Заключение

Данный клинический случай демонстрирует эффективность твердотельной рефракционной установки «OLIMP-2000/213» в отношении коррекции гиперметропии высокой степени.

Твердотельная технология, использующая излучение с λ=213 нм, позволяет расширить показания к рефракционным операциям, в частности, в случаях индуцированной гиперметропии «сверхвысокой» степени в сочетании с астигматизмом.

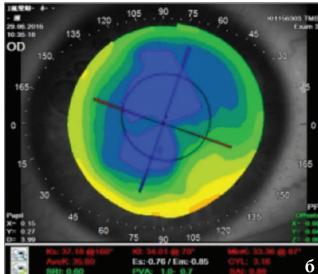
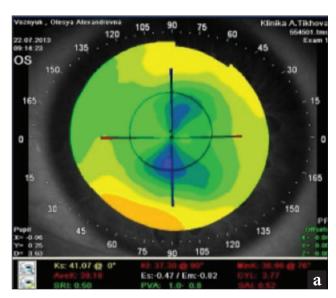



Рис. 1. Кератотопограммы правого глаза: а) до операции; б) 3 года после операции

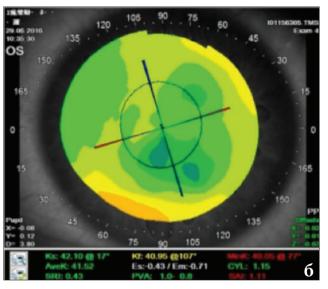


Рис. 2. Кератотопограммы левого глаза: а) до операции; б) 3 года после операции

Литература

- 1. *Балашевич Л.И.* Рефракционная хирургия. СПб.: Издательский дом СПбМАПО, 2002. 288 с.
- 2. *Балашевич Л.И*. Хирургическая коррекция аномалий рефракции и аккомодации. СПб.: Человек, 2009. 296 с.
- 3. *Куренков В.В.* Руководство по эксимерлазерной хирургии. М.: Издательство РАМН, 2002. 400 с.
- 4. Тихов А.В., Суслова А.Ю., Суслов С.И., Страхова Г.Ю. Применение твердотельных лазеров ультрафиолетового диапазона в рефракционной хирургии роговицы. Обзор литературы // Рефракционная хирургия и офтальмология. 2010. Т. 10 (№ 3). С. 11-15.
- 5. Тихов А.В., Кузнецов Д.В., Суслова А.Ю., Страхова Г.Ю., Суслов С.И. Первая отечественная твердо-

- тельная лазерная система для рефракционной хирургии «Олимп-2000» // Съезд офтальмологов России, 9-й: Тез. докл. М., 2010. С. 101.
- 6. Anderson I., Sanders D.R., Van Saarloos P.P., Ardrey W.J. IV. Treatment of irregular astigmatism with a 213 nm solid-state, diode-pumped neodymium:YAG ablative laser // J. Cataract. Refract. Surg. 2004. Vol. 30. P. 2145-2151.
- 7. Dair G.T., Ashman R.A., Eikelboom R.H. et al. Absorption of 193- and 213- nm laser wavelengths in sodium chloride solution and balanced salt solution // Arch. Ophthalmol. 2001. Vol. 119. P. 533-537.
- 8. Hale G.M., Querry M.R. Optical constans of water in the 200 nm to 200 μ m wavelength region // Appl. Opom. 1973. Vol. 12. P. 555-563.

9. Tsiklis N.S., Kymionis G.D., Kounis G.A. et al. Oneyear results of photorefractive keratectomy and laser in situ keratomileusis for myopia using a 213 nm wavelength solidstate laser // J. Cataract. Refract. Surg. – 2007. – Vol. 33. – P. 971-977. 10. Tsiklis N.S., Kymionis G.D., Kounis G.A. et al. Photorefractive keratectomy using solid state laser 213 nm and excimer laser 193 nm: a randomized, contralateral, comparative, experimental study // Invest. Ophthalmol. Vis. Sci. -2008. - Vol. 49, N 4. - P. 1415-1420.

Труфанова Л.П., Балалин С.В.

Влияние различных факторов на напряжение склеры при аметропии

Волгоградский филиал ФГАУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России

РЕФЕРАТ

Цель. Оценить влияние различных факторов на изменение напряжения склеры у пациентов с миопией.

Материал и методы. Проведен анализ результатов обследований у 50 пациентов (100 глаз) с миопией и у 30 пациентов с гиперметропией (30 глаз). Средний возраст у пациентов с миопией составлял $13,1\pm0,3$ года (от 6 до 17 лет), у пациентов с гиперметропией – 13,1±0,4 года. Миопия слабой степени выявлена на 32 глазах, средней степени – на 42 глазах и высокой степени – на 26 глазах. У всех обследуемых проводилось стандартное офтальмологическое обследование: исследование остроты зрения, рефрактометрия, ультразвуковая биометрия и биомикроскопия глаза, пахиметрия, тонометрия, измерение ригидности корнеосклеральной оболочки по данным компьютерной дифференциальной тонометрии по Фриденвальду. Определение напряжения склеры проводили по формуле Лапласа: $\delta =$ где РОЕ – уровень внутриглазного давления (мм рт.ст.), измеренный с учетом ригидности склеры, L – переднее-задний размер глазного яблока (мм), ТС – толщина склеры в проекции плоской части цилиарного тела.

Результаты. У пациентов с миопией увеличение переднее-заднего размера глазного яблока сопровождалось достоверным снижением толщины склеры в проекции плоской части цилиарного тела, что приводило также к достоверному увеличению напряжения склеры. Установлена зависимость между уровнем ВГД, измеренного с учетом ригидности корнеосклеральной оболочки глаза, и показателем напряжения склеры: $\delta = 48,4+13*P0E$.

Заключение. Прогрессирование миопии сопровождается достоверным снижением толщины склеры в проекции плоской части цилиарного тела и увеличением напряжения склеры.

Ключевые слова: миопия, гиперметропия, напряжение склеры.

Прогрессирующая близорукость является одной из основных причин инвалидности по зрению, ограничению профессионального выбора и слепоты: от 23 до 45% всех инвалидов по зрению — инвалиды вследствие миопии высокой степени. Частота близорукости в развитых странах мира составляет 19-42%, достигая в некоторых странах Востока 70%. У школьников младших классов частота близорукости составляет 6-8%, у старших школьников увеличивается до 25-30%. Наряду с частотой миопии увеличивается и ее степень, достигая 6,0 дптр и более у 10-12% пациентов.

Основными факторами возникновения и прогрессирования близорукости служат ослабленная аккомодация, наследственная предрасположенность и ослабление прочностных свойств склеры. В патогенезе прогрессирующей миопии ведущая роль принадлежит изменениям структурных, биохимических, биомеханических свойств склеры, что приводит к её растяжению как в сагиттальном, так и во фронтальном направлении [5, 8]. Одним из критериев скорости прогрессирования миопии, кроме изменения рефракции, увеличения переднее-заднего размера глазного яблока, может быть динамическое изменение напряжения склеры [6, 7].